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chiral aldehydes. Our results indicate that, for a induction 
based only on the relative sizes of a-substituents (Cram's 
rule)," the tributylstannyl anion exhibits much the same 
stereoselectivity as unhindered Grignard reagents. Thus 
2,3-dimethylbutanal (THF, —110 0C) gives essentially the 
same stereochemical product distribution with either tri-
butylstannyllithium (3:1) or methylmagnesium bromide 
(2.5:1). In the case of the former addition, the product 
stannylcarbinol mixture was protected (BnOCH2Cl, i-
Pr2NEt), lithiated (BuLi, THF, - 78 0 C) , and methylated 
(Me2SO4) to give the same major methylcarbinol produced 
by the Grignard addition. This result would seem to indicate 
that methylation proceeds with retention unless steric a in­
duction with methylmagnesium bromide is opposite that ob­
served with tributylstannyllithium. 

Stereoselectivity is somewhat improved with aldehydes 
substituted at the /3 position by oxygen. With a-asymmetric 
aldehydes of this type, the cyclic chelate mechanism12 would 
presumably be operative and anti-Cram products would be 
predicted. When the /3-alkoxy aldehyde 7 was treated with 
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tributylstannyllithium in THF, a 5:1 ( - 7 8 0 C) or 8:1 ( -110 
0C) mixture of diastereomeric stannylcarbinols was produced. 
After protection (MeOCH2CI, /-Pr2NEt), the major diaste-
reomer was purified by MPLC on silica gel. Lithiation (BuLi, 
- 7 8 0 C, THF) and methylation (Me2SO4) then gave the an­
ticipated13 threo product14 stereospecifically. For comparison, 
both methyllithium and methylmagnesium bromide add to 7 
(THF, —78 0C) in an essentially stereorandom manner. Al­
though the generality of stereoselection in tin anion additions 
remains to be established, these preliminary results suggest that 
tributylstannyllithium may be added'to aldehydes with mod­
erate stereoselectivity and that the direction of the addition is 
that predicted either by Cram's rule or by the cyclic chelation 
model.15 
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Total Synthesis of Stemolide 

Sir: 

Falling in the same class as the potent cytotoxic agents 
triptolide, tripdiolide, and triptonide,' the diterpenoid bis-
epoxide stemolide (1), possessing the novel 18(4—*3)a6eo-
abietane skeleton, was recently isolated and described by 
Manchand and Blount.2 Herein we report a total synthesis of 

this natural product, the first route to a representative of this 
structural type.3 

To prepare for the later incorporation of the bis epoxide 
moiety, the starting material, methyl dehydroabietate,4 was 
first functionalized in the aromatic ring by treatment with 
acetyl chloride in CS2 in the presence of Al2CU, providing 
methyl 12-acetyldehydroabietate (80%). Baeyer-Villiger 
oxidation with 3,5-dinitroperbenzoic acid5-methanesulfonic 
acid (CH2Cl2, room temperature), saponification, and O-
alkylation with MeI-NaH (THF, room temperature) led to 
methoxy ester 2,6 convertible by EtSLi7 (HMPA-THF, room 
temperature) into the corresponding acid 36 (76% from 2). 
Following the approach of Huffman and and Stockel,8 the 
substituted dehydroabietic acid 3 was transformed into the 
dehydroabietene 7 (mp 75-77 °C) by Curtius degradation to 
isocyanate 4, LiAlH4 reduction followed by Eschweiler-Clarke 
methylation to 5, N-oxidation to 6, and Cope elimination (72% 
from 3). The a-epoxide resulting from w-chloroperbenzoic 
acid oxidation of 7, on treatment with Et2Al-N-Z-Pr2

9 

(C6H6/PE, 50 0C), generated allyl alcohol 8. After conversion 
(«-Bu3P/CCl4, 0 0C) of 8 to halide 9, displacement by lithium 
thiophenoxide (THF, room temperature) gave thioether 10 
(81% from 7). The corresponding sulfonium fluoroborate 11 
was converted by BuLi (THF, —78 0C) into ylide 12, which 
underwent in situ electrocyclic conversion at 0 0 C into the 
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homologated thioether 13. Transformation into aldehyde 14 
(34% from 10) was achieved by a-monochlorination of the 
thioether unit (NCS, CCU, room temperature), formation of 
the monothioacetal by treatment with MeOH (ether, 0 0C), 
and final treatment with l2/NaHC03 (dioxane-H20, room 
temperature). Oxidation of 14 (NaCl02 /NH2S03H, 
THF-H2O, 0 0C) afforded the unsaturated acid 15 (mp 80-84 
0C): NMR (CCl4) 5 0.98 (s, 3 H, 20-CH3), 1.16 (d, J = 7.0 
Hz, 6 H, 16-CH3 and 17-CH3), 3.70 (s, 3 H, 12-OCH3), 4.77, 
4.95 (s, 1 H, 19-CH2), 6.52 (s, 1 H, 11-CH), 6.67 (s, 1 H, 
14-CH). 

On subjection to the action of 86 equiv of Li bronze in t-
BuOH-Et2O-NH3 for 4 h, 15 was reduced to the dihydroan-
isole 16 [NMR (CCl4) inter alia 5 3.45 (s, 3 H, 12-OCH3), 
4.75, 4.97 (s, 1 H, 19-CH2)], which was hydrolyzed by 2-h 
reflux in 6 N HC104/THF, giving the conjugated ketone 17 
[NMR (CCl4) inter alia 5 4.74, 4.94 (s, 1 H, 19-CH2), 5.77 
(m, 1 H, 11-CH)]. Oxidation of the latter with 3,5-dinitro-
perbenzoic acid (CH2Cl2, room temperature, 13 h), followed 
by exposure to CH2N2/Et20 at 0 0C, provided (38% from 14) 
epoxy ester 18: NMR (CCl4) inter alia 5 3.68 (s, 3 H, 18-
CO2CH3), 5.72 (m, 1 H, 11-CH). Through the action of 
LiN-/-Pr2/THF (-78 0C), ester 18 presumably suffers 
elimination to the 7-hydroxy-a,/3-unsaturated ester, which 
spontaneously cyclizes (46%) to the butenolide 19: NMR 
(CCl4) inter alia 8 4.60 (m, 2 H, 19-CH2), 5.78 (m, 1 H, 11-
CH). C-ring reduction of 19 to the conjugated diene level was 

managed by preliminary conversion (TsNHNH2/HCl, 
MeOH, reflux) into the tosylhydrazone followed by the action 
of 25 equiv of LiH in refluxing C6H5CH3,'° generating (39%) 
trienelactone 20: NMR (CDCl3) 5 0.88 (s, 3 H, 20-CH3), 1.04 
(d, J = 6.8 Hz, 6 H, 16-CH3 and 17-CH3), 4.69 (m, 2 H, 
19-CH2), 5.69 (m, 2 H, 11-CH and 12-CH). In keeping with 
the biosynthetic suggestions of Manchand and Blount,2 the 
diene moiety of 20 was subjected to attack by 1O2 (generated 

by irradiation Of3O2 in the presence of methylene blue), giving 
a stereomeric mixture of peroxides 21 (~2:1 9,\3-a:j3). After 
separation of 21 on a silica gel column, the /3-peroxide was 
heated in refluxing xylene for 12 h. The product, formed in 
nearly quantitative yield and crystallized from ether-ethyl 
acetate, was found to be identical with natural stemolide, on 
the basis of IR, NMR, CD ([S]223 nm +15 300, [O]246 nm 
-4800), mass spectral, as well as melting point (230-232 0C) 
and mixture melting point (230-232 0C) comparisons. 
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Spectroscopic Characterization of an 
Electrophilic Transition-Metal-Methylene Complex, 
7j5-C5H5[(C6H5)2PCH2CH2P(C6H5)2]Fe=CH2+ 

Sir: 

The preparation of transition-metal-carbene complexes 
which lack direct heteroatom stabilization of the electrophilic 
carbene carbon center is of interest owing to the high reactivity 
of these species in comparison with that of heteroatom-stabi-
lized systems.1 To date, Schrock2 has reported the only suc­
cessful isolation of an unsubstituted methylene complex, 
Cp2TaCH3(CH2); however, based on its reactivity, the carbene 
carbon in this complex is clearly nucleophilic in nature. In the 
electrophilic series, methylene complexes have been frequently 
postulated as intermediates, but their direct observation has 
most often been elusive. For example, Pettit and Jolly,3 Green,4 

and Brookhart5 have suggested la as a transient species formed 
on acid treatment of Cp(CO)2Fe-C^OCH3, while Davison6 

and Flood7 have proposed lb as an intermediate formed from 
Cp(CO)PPh3Fe-CH20R in acid-catalyzed methylene transfer 
to olefins and SO2 insertion into the C—O bond, respectively. 
Pettit8 has recently suggested the formation of the 
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